Sách Giáo Khoa 247

Toán tập 2 - Bài Tập Cuối Chương VII | Kết Nối Tri Thức Với Cuộc Sống

Xem chi tiết nội dung bài Bài Tập Cuối Chương VII và tải xuống miễn phí trọn bộ file PDF Sách Toán tập 2 | Kết Nối Tri Thức Với Cuộc Sống

Trang 64

A – TRẮC NGHIỆM

7.33. Cho các phát biểu sau:

(1) Hai mặt phẳng (P) và (Q) có giao tuyến là đường thẳng a và cùng vuông góc với mặt phẳng (R) thì a ⊥ (R).

(2) Hai mặt phẳng (P) và (Q) vuông góc với nhau và có giao tuyến là đường thẳng a, một đường thẳng b nằm trong mặt phẳng (P) và vuông góc với đường thẳng a thì b ⊥ (Q).

(3) Mặt phẳng (P) chứa đường thẳng aa vuông góc với (Q) thì (P) ⊥ (Q).

(4) Đường thẳng a nằm trong mặt phẳng (P) và mặt phẳng (P)vuông góc với mặt phẳng (Q) thì a ⊥ (Q).

Số phát biểu đúng trong các phát biểu trên là:

A. 1.

B. 2.

C. 3.

D. 4.

7.34. Cho mặt phẳng (P) vuông góc với mặt phẳng (Q) và a là giao tuyến của (P) và (Q). Trong các phát biểu dưới đây, phát biểu nào đúng?

A. Đường thẳng d nằm trên (Q) thì d vuông góc với (P).

B. Đường thẳng d nằm trên (Q) và d vuông góc với a thì d vuông góc với (P).

C. Đường thẳng d vuông góc với a thì d vuông góc với (P).

D. Đường thẳng d vuông góc với (Q) thì d vuông góc với (P).

7.35. Cho hình chóp tứ giác đều S.ABCD. Phát biểu nào sau đây là đúng?

A. Số đo của góc nhị diện [S, AB, C] bằng SBC.

B. Số đo của góc nhị diện [D, SA, B] bằng 90°.

C. Số đo của góc nhị diện [S, AC, B] bằng 90°.

D. Số đo của góc nhị diện [D, SA, B] bằng BSD.

7.36. Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA ⊥ (ABCD).

Phát biểu nào sau đây là sai?

A. Đường thẳng BC vuông góc với mặt phẳng (SAB).

B. Đường thẳng BD vuông góc với mặt phẳng (SAC).

C. Đường thẳng AC vuông góc với mặt phẳng (SBD).

D. Đường thẳng AD vuông góc với mặt phẳng (SAB).

7.37. Thể tích của khối chóp có diện tích đáy bằng S, chiều cao bằng h

A. V = S · h.

B. V = S · h.

C. V = S · h.

D. V = S · h.

Trang 65

B – TỰ LUẬN

7.38. Cho tứ diện OABC OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = OC = 2a. Tính khoảng cách từ điểm O đến mặt phẳng (ABC).

7.39. Cho tứ diện ABCD có tam giác ABC cân tại A, tam giác BCD cân tại D. Gọi I là trung điểm của cạnh BC.

a) Chứng minh rằng BC ⊥ (AID).

b) Kẻ đường cao AH của tam giác AID. Chứng minh rằng AH ⊥ (BCD).

c) Kẻ đường cao IJ của tam giác AID. Chứng minh rằng IJ là đường vuông góc chung của ADBC.

7.40. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC = a = 30°. Biết SA ⊥ (ABC) và SA = .

a) Chứng minh rằng (SBC) ⊥ (SAB).

b) Tính theo a khoảng cách từ điểm A đến đường thẳng SC và khoảng cách từ điểm A đến mặt phẳng (SBC).

7.41. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết tam giác SAD vuông cân tại S và (SAD) ⊥ (ABCD).

a) Tính theo a thể tích của khối chóp S.ABCD.

b) Tính theo a khoảng cách giữa hai đường thẳng ADSC.

7.42. Cho hình hộp ABCD.A'B'C'D' có độ dài tất cả các cạnh bằng a, AA’ ⊥ (ABCD) và = 60°.

a) Tính thể tích của khối hộp ABCD.A'B'C'D'.

b) Tính khoảng cách A đến mặt phẳng (A'BD)

7.43. Cho hình lăng trụ ABCD.A'B'C'D'. Biết A'ABCD là hình chóp đều có tất cả các cạnh đều bằng nhau và bằng a. Tính theo a thể tích của khối lăng trụ ABCD.A'B'C'D' và thể tích của khối chóp A'.BB'C'C.

7.44. Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, AB // CDAB = BC = DA = a, CD = 2a. Biết hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy (ABCD) và SA = . Tính theo a khoảng cách từ S đến mặt phẳng (ABCD) và thể tích của khối chóp S.ABCD.

7.45. Trên mặt đất phẳng, người ta dựng một cây cột AB có chiều dài bằng 10 m và tạo với mặt đất góc 80°. Tại một thời điểm dưới ảnh sáng mặt trời, bóng BC của cây cột trên mặt đất dài 12 m vào tạo với cây cột một góc bằng 120° (tức là =120°). Tính góc giữa mặt đất và đường thẳng chứa tia sáng mặt trời tại thời điểm nói trên.

Xem và tải xuống trọn bộ sách giáo khoa Toán tập 2

Tổng số đánh giá:

Xếp hạng: / 5 sao

Sách giáo khoa liên quan

Ngữ Văn 11 - Tập Một

Ngữ Văn Lớp 11 (Tập 1) Chương Trình Cơ Bản

Công Nghệ 11

Công nghệ 11 - NXB Giáo Dục

Địa Lí 11

Địa Lí 11 - NXB Giáo dục

Địa Lí 11 (Nâng Cao)

Địa Lí 11 Nâng cao - NXB Giáo dục

Lịch Sử 11

Lịch sử 11 - NXB Giáo Dục

Sinh Học 11

Sinh học 11 - NXB Giáo dục

Giải bài tập Toán 11 Tập 1

Giải bài tập Toán lớp 11 - Tập 1

Giải bài tập Vật lý 11

Giải bài tập Vật lý 11

Giải bài tập Sinh học 11

Giải bài tập Sinh học 11

Gợi ý cho bạn

cong-nghe-4-1564

Công Nghệ 4

NXB Kết nối tri thức với cuộc sống - Công nghệ 4

giao-duc-cong-dan-10-820

Giáo Dục Công Dân 10

Sách Giáo Dục Công Dân Lớp 10. Tổng 2 phần, 16 bài.

atlat-1360

Atlat

Atlat hay atlas là một tập hợp các bản đồ, thường là của Trái Đất hoặc một khu vực trên Trái Đất. Ngoài ra còn có atlas của các hành tinh trong hệ Mặt Trời.

mi-thuat-12-thiet-ke-mi-thuat-san-khau-dien-anh-3484

Mĩ Thuật 12 (Thiết Kế Mĩ Thuật Sân Khấu, Điện Ảnh)

Sách giáo khoa Mĩ thuật 12 – Thiết kế mĩ thuật sân khấu, điện ảnh cung cấp những kiến thức giúp các em nhận biết đặc điểm của thiết kế trang phục nghệ thuật.

my-thuat-thiet-ke-cong-nghiep-1176

Mỹ Thuật Thiết Kế Công Nghiệp

Mỹ Thuật Thiết Kế Công Nghiệp 11

Nhà xuất bản

canh-dieu-1

Cánh Diều

Bộ sách giáo khoa của Nhà xuất bản Cánh Diều

chan-troi-sang-tao-2

Chân Trời Sáng Tạo

Bộ sách giáo khoa của Nhà xuất bản Chân Trời Sáng Tạo

ket-noi-tri-thuc-voi-cuoc-song-3

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

giao-duc-viet-nam-5

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

sach-bai-giai-6

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

sach-bai-tap-7

Sách Bài Tập

Sách bài tập tất cả các khối lớp

tai-lieu-hoc-tap-9

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

global-success-bo-giao-duc-dao-tao-11

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

nxb-dai-hoc-su-pham-tphcm-12

NXB - Đại Học Sư Phạm TPHCM

NXB - Đại Học Sư Phạm TPHCM

Chủ đề

Liên Kết Chia Sẻ

** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.