Mở đầu trang 111 Toán 11 Tập 1: Trong Thuyết tương đối của Einstein, khối lượng của vật chuyển động với vận tốc v cho bởi công thức , trong đó m0 là khối lượng của vật khi nó đứng yên, c là vận tốc ánh sáng. Chuyện gì xảy ra với khối lượng của vật khi vận tốc của vật gần với vận tốc ánh sáng?
Lời giải:
Sau bài học này ta sẽ giải quyết được bài toán trên như sau:
Từ công thức khối lượng ta thấy m là một hàm số của v, với tập xác định là nửa khoảng [0; c). Rõ ràng khi v tiến gần tới vận tốc ánh sáng, tức là v ⟶ c, ta có . Do đó nghĩa là khối lượng m của vật trở nên vô cùng lớn khi vận tốc của vật gần tới vận tốc ánh sáng.
1. Giới hạn hữu hạn của một hàm số tại một điểm
HĐ1 trang 111 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại một điểm
Cho hàm số
a) Tìm tập xác định của hàm số f(x).
b) Cho dãy số Rút gọn f(xn) và tính giới hạn của dãy (un) với un = f(xn).
c) Với dãy số (xn) bất kì sao cho xn ≠ 2 và xn ⟶ 2, tính f(xn) và tìm
Lời giải:
a) Biểu thức f(x) có nghĩa khi x – 2 ≠ 0 ⇔ x ≠ 2.
Do đó, tập xác định của hàm số f(x) là D = ℝ \ {2}.
b) Ta có:
Luyện tập 1 trang 113 Toán 11 Tập 1: Tính
Lời giải:
Do mẫu thức có giới hạn là 0 khi x ⟶ 1 nên ta không thể áp dụng ngay quy tắc tính giới hạn của thương hai hàm số.
Lại có:
Do đó
HĐ2 trang 113 Toán 11 Tập 1: Nhận biết khái niệm giới hạn một bên
Cho hàm số
a) Cho và . Tính yn = f(xn) và y'n = f(x'n).
b) Tìm giới hạn của các dãy số (yn) và (y'n).
c) Cho các dãy số (xn) và (x'n) bất kì sao cho xn < 1 < x'n và xn ⟶ 1, x'n ⟶ 1, tính
Lời giải:
a) Ta có: với mọi n > 0 => xn - 1 < 0 với mọi n > 0.
Do đó,
Ta cũng có: với mọi n > 0 => x'n - 1 < 0 với mọi n > 0.
Do đó,
b) Ta có
c) Ta có:
Vì xn < 1 < x'n, suy ra xn – 1 < 0 và x'n – 1 > 0 với mọi n.
Do đó, f(xn) = – 1 và f(x'n) = 1.
Vậy
Luyện tập 2 trang 113 Toán 11 Tập 1: Cho hàm số
Tính
Lời giải:
Với dãy số (xn) bất kì sao cho xn < 0 và xn ⟶ 0, ta có f(xn) = – xn.
Do đó
Tương tự, với dãy số (xn) bất kì sao cho xn > 0 và xn ⟶ 0, ta có
Do đó
Khi đó,
2. Giới hạn hữu hạn của hàm số tại vô cực
HĐ3 trang 114 Toán 11 Tập 1: Nhận biết khái niệm giới hạn tại vô cực
Cho hàm số có đồ thị như Hình 5.4.
Giả sử (xn) là dãy số sao cho xn > 1, xn ⟶ +∞. Tính f(xn) và tìm.
Lời giải:
Với (xn) là dãy số sao cho xn > 1, xn ⟶ +∞.
Ta có:
Khi
Do đó
Luyện tập 3 trang 115 Toán 11 Tập 1: Tính
Lời giải:
Ta có
Vận dụng trang 115 Toán 11 Tập 1: Cho tam giác vuông OAB với A = (a; 0) và B = (0; 1) như Hình 5.5. Đường cao OH có độ dài là h.
a) Tính h theo a.
b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?
c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?
Lời giải:
a) Ta có: A = (a; 0) ⇒ OA = a; B = (0; 1) ⇒ OB = 1
Tam giác OAB vuông tại O có đường cao OH nên ta có
b) Khi điểm A dịch chuyển về O, ta có OA = a = 0, suy ra h = 0, do đó điểm H dịch chuyển về điểm O.
c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, ta có OA = a ⟶ +∞.
Ta có:
Do đó, điểm H dịch chuyển về điểm B.
3. Giới hạn vô cực của một hàm số tại một điểm
HĐ4 trang 115 Toán 11 Tập 1: Nhận biết khái niệm giới hạn vô cực
Xét hàm số có đồ thị như Hình 5.6.
Cho , chứng tỏ rằng f(xn) ⟶ +∞.
Lời giải:
Ta có:
Vì n ⟶ +∞ nên và f(xn) ⟶ +∞.
HĐ5 trang 116 Toán 11 Tập 1: Cho hàm số Với các dãy số (xn) và (x'n) cho bởi , tính và
Lời giải:
Ta có:
Luyện tập 4 trang 116 Toán 11 Tập 1: Tính các giới hạn sau:
Lời giải:
a) Xét hàm số . Lấy dãy số (xn) bất kì sao cho xn ≠ 0, xn ⟶ 0.
Do đó,
b) Đặt . Với mọi dãy số (xn) trong khoảng (– ∞; 2) mà ta có
Luyện tập 5 trang 118 Toán 11 Tập 1: Tính
Lời giải:
+) Ta có: , x – 2 > 0 với mọi x > 2 và