Sách Giáo Khoa 247

Giải bài tập Toán 11 Tập 2 - Bài 32: Các quy tắc tính đạo hàm | Kết Nối Tri Thức Với Cuộc Sống

Xem chi tiết nội dung bài Bài 32: Các quy tắc tính đạo hàm và tải xuống miễn phí trọn bộ file PDF Sách Giải bài tập Toán 11 Tập 2 | Kết Nối Tri Thức Với Cuộc Sống

Mở đầu trang 88 Toán 11 Tập 2: Một vật được phóng theo phương thẳng đứng lên trên từ mặt đất với vận tốc ban đầu v0 = 20 m/s. Trong Vật lí, ta biết rằng khi bỏ qua sức cản của không khí, độ cao h so với mặt đất (tính bằng mét) của vật tại thời điểm t (giây) sau khi ném được cho bởi công thức sau:

trong đó, v0 là vận tốc ban đầu của vật, g = 9,8 m/s2 là gia tốc rơi tự do. Hãy tính vận tốc của vật khi nó đạt độ cao cực đại và khi nó chạm đất.

Lời giải:

Phương trình chuyển động của vật là

Vận tốc của vật tại thời điểm t được cho bởi v(t) = h' = v0 – gt.

Vật đạt độ cao cực đại tại thời điểm , tại đó vận tốc bằng v(t1) = v0­ – gt1 = 0.

Vật chạm đất tại thời điểm t2 mà h(t2) = 0 nên ta có:

Khi chạm đất, vận tốc của vật là v(t2) = v0 – gt2 = –v0 = –20 (m/s).

Dấu âm của v(t2) thể hiện độ cao của vật giảm với vận tốc 20 m/s (tức là chiều chuyển động của vật ngược với chiều dương đã chọn).

1. Đạo hàm của một số hàm số thường gặp

HĐ1 trang 88 Toán 11 Tập 2: Nhận biết đạo hàm của hàm số y = xn.

a) Tính đạo hàm của hàm số y = x3 tại điểm x bất kì.

b) Dự đoán công thức đạo hàm của hàm số y = xn (n ∈ ℕ*).

Lời giải:

a)

Đặt y = f(x) = x3.

Với x0 bất kì, ta có:

Vậy đạo hàm của hàm số đã cho là y' = 3x.

b)

Dự đoán công thức đạo hàm của hàm số y = xn (n ∈ ℕ*) là y' = nxn – 1.

HĐ2 trang 88 Toán 11 Tập 2: Dùng định nghĩa, tính đạo hàm của hàm số y = √x tại điểm x > 0.

Lời giải:

2. Đạo hàm của tổng, hiệu, tích, thương

HĐ3 trang 89 Toán 11 Tập 2: Nhận biết quy tắc đạo hàm của tổng

a) Dùng định nghĩa, tính đạo hàm của hàm số y = x3 + x2 tại điểm x bất kì.

b) So sánh: (x3 + x2)' và (x3)' + (x2)'.

Lời giải:

a)

Đặt f(x) = y = x3 + x2­.

Với x0 bất kì, ta có:

Vậy đạo hàm của hàm số y = x3 + x2 là hàm số y' = 3x2 + 2x.

b)

Ta có (x3)' = 3x2 ; (x2)' = 2x, do đó (x3)' + (x2)' = 3x2 + 2x.

Từ đó suy ra (x3 + x2)' = (x3)' + (x2)' (cùng bằng 3x2 + 2x).

Luyện tập 1 trang 90 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

Lời giải:

a)

Với x ≥ 0 và x ≠ – 1 ta có:

b)

Với x ≥ 0 ta có:

3. Đạo hàm của hàm số hợp

HĐ4 trang 90 Toán 11 Tập 2: Nhận biết quy tắc đạo hàm của hàm số hợp

Cho các hàm số y = u2 và u = x2 + 1.

a) Viết công thức của hàm số hợp y = (u(x))2 theo biến x.

b) Tính và so sánh: y'(x) và y' (u) . u' (x).

Lời giải:

a)

Công thức của hàm số hợp y = (u(x))2 theo biến x là:

y = (u(x))2 = (x2 + 1)2 = x4 + 2x2 + 1.

b)

Ta có y'(x) = (x4 + 2x2 + 1)' = 4x3 + 4x.

Lại có u'(x) = (x2 + 1)' = 2x ; y'(u) = (u2)' = 2u.

Do đó, y' (u) . u' (x) = 2u . 2x = 4x(x2 + 1) = 4x3 + 4x.

Vậy y'(x) = y' (u) . u' (x).

Luyện tập 2 trang 91 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

Lời giải:

a)

y' = [(2x – 3)10]' = 10.(2x – 3)9 . (2x – 3)' = 10.(2x – 3)9 . 2 = 20(2x – 3)9.

b) Với x ∈ (– 1; 1), ta có:

4. Đạo hàm của hàm số lượng giác

HĐ5 trang 91 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của hàm số y = sin x

a) Với h ≠ 0, biến đổi hiệu sin(x + h) – sin x thành tích.

b) Sử dụng đẳng thức giới hạn và kết quả của câu a, tính đạo hàm của hàm số y = sin x tại điểm x bằng định nghĩa.

Lời giải:

a) Với h ≠ 0, ta có:

Luyện tập 3 trang 91 Toán 11 Tập 2: Tính đạo hàm của hàm số

Lời giải:

HĐ6 trang 91 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của hàm số y = cos x

Bằng cách viết , tính đạo hàm của hàm số y = cos x.

Lời giải:

Vậy đạo hàm của hàm số y = cos x là hàm số y' = – sin x.

Luyện tập 4 trang 91 Toán 11 Tập 2: Tính đạo hàm của hàm số

Lời giải:

HĐ7 trang 92 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của các hàm số y = tan x và y = cot x

a) Bằng cách viết  , tính đạo hàm của hàm số y = tanx.

b) Sử dụng hằng đẳng thức  (k∈Z), tính đạo hàm của hàm số y = cot x.

Luyện tập 5 trang 92 Toán 11 Tập 2: Tính đạo hàm của hàm số

Lời giải:

Ta có:

Vận dụng 1 trang 92 Toán 11 Tập 2: Một vật chuyển động có phương trình s(t) = (m), với t là thời gian tính bằng giây. Tính vận tốc của vật khi t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).

Lời giải:

Ta có:

Vậy vận tốc của vật khi t = 5 giây là:

5. Đạo hàm của hàm số mũ và hàm số Lôgarit

HĐ8 trang 92 Toán 11 Tập 2: Giới hạn cơ bản của hàm số mũ và hàm số lôgarit

Lời giải:

HĐ9 trang 93 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của hàm số mũ

a) Sử dụng giới hạn , tính đạo hàm của hàm số y = ex tại x bằng định nghĩa.

b) Sử dụng hằng đẳng thức ax = exlna (0 < a ≠ 1), hãy tính đạo hàm của hàm số y = ax.

Lời giải:

a)

Với x bất kì và h = x – x0, ta có:

Vậy hàm số y = ex có đạo hàm là hàm số y' = ex.

b)

Ta có: ax = ex.ln a nên (ax)' = (ex.ln a)' = (x.ln a)' . ex.ln a = ex.ln a.ln a = ax.ln a.

Luyện tập 6 trang 93 Toán 11 Tập 2: Tính đạo hàm của các hàm số sau:

a) y = ex2−x ;

b) y = 3sin x .

Lời giải:

a)

b) y' = (3sin x)' = 3sin x . (sin x)' . ln3 = 3sin x.cos x. ln3.

HĐ10 trang 93 Toán 11 Tập 2: Xây dựng công thức tính đạo hàm của hàm số lôgarit

a) Sử dụng giới hạn và đẳng thức , tính đạo hàm của hàm số y = ln x tại điểm x > 0 bằng định nghĩa.

b) Sử dụng đẳng thức (0 < a ≠ 1), hãy tính đạo hàm của hàm số y = logax.

Lời giải:

a)

Với x > 0 bất kì và h = x – x0 ta có:

Vậy hàm số y = ln x có đạo hàm là hàm số

b)

Luyện tập 7 trang 94 Toán 11 Tập 2: Tính đạo hàm của hàm số y = log2(2x – 1).

Lời giải:

Điều kiện: 2x – 1 > 0 ⇔ x > 1/2 . Hàm số đã cho xác định trên

Ta có:

Vận dụng 2 trang 94 Toán 11 Tập 2: Ta đã biết, độ pH của một dung dịch được xác định bởi pH = –log[H+], ở đó [H+] là nồng độ (mol/lít) của ion hydrogen. Tính tốc độ thay đổi của pH đối với nồng độ [H+].

Tốc độ thay đổi của pH với nồng độ [H+] là đạo hàm của pH. Ta có:

Vậy tốc độ thay đổi của pH với nồng độ [H+] là

Xem và tải xuống trọn bộ sách giáo khoa Giải bài tập Toán 11 Tập 2

Tổng số đánh giá:

Xếp hạng: / 5 sao

Sách giáo khoa liên quan

Công Nghệ 11

Công nghệ 11 - NXB Giáo Dục

Địa Lý 11

Địa lý 11 - NXB Giáo dục

Địa Lý 11 Nâng Cao

Địa lý 11 Nâng cao - NXB Giáo dục

Lịch Sử 11

Lịch sử 11 - NXB Giáo Dục

Sinh Học 11

Sinh học 11 - NXB Giáo dục

Giải bài tập Toán 11 Tập 1

Giải bài tập Toán lớp 11 - Tập 1

Giải bài tập Vật lý 11

Giải bài tập Vật lý 11

Giải bài tập Sinh học 11

Giải bài tập Sinh học 11

Gợi ý cho bạn

cong-nghe-7-870

Công Nghệ 7

Sách Lớp 7 Cánh Diều

vat-ly-1159

Vật Lý

Vật Lý cơ bản 11

tin-hoc-8-923

Tin Học 8

Sách Lớp 8 Chân Trời Sáng Tạo

hoat-dong-trai-nghiem-8-942

Hoạt Động Trải Nghiệm 8

Sách Lớp 8 Kết Nối Tri Thức

my-thuat-dieu-khac-1172

Mỹ Thuật Điêu Khắc

Mỹ Thuật Điêu Khắc 11

Nhà xuất bản

canh-dieu-1

Cánh Diều

Bộ sách giáo khoa của Nhà xuất bản Cánh Diều

chan-troi-sang-tao-2

Chân Trời Sáng Tạo

Bộ sách giáo khoa của Nhà xuất bản Chân Trời Sáng Tạo

ket-noi-tri-thuc-voi-cuoc-song-3

Kết Nối Tri Thức Với Cuộc Sống

Sách giáo khoa của nhà xuất bản Kết Nối Tri Thức Với Cuộc Sống

giao-duc-viet-nam-5

Giáo Dục Việt Nam

Bộ Sách Giáo Khoa của Nhà Xuất Bản Giáo Dục Việt Nam

sach-bai-giai-6

Sách Bài Giải

Bài giải cho các sách giáo khoa, sách bài tập

sach-bai-tap-7

Sách Bài Tập

Sách bài tập tất cả các khối lớp

tai-lieu-hoc-tap-9

Tài liệu học tập

Đây là tài liệu tham khảo hỗ trợ trong quá trình học tập

global-success-bo-giao-duc-dao-tao-11

Global Success & Bộ Giáo Dục - Đào Tạo

Bộ sách Global Success & Bộ Giáo Dục - Đào Tạo là sự kết hợp giữa ngôn ngữ Tiếng Anh theo lối giảng dạy truyền thống và cập nhật những phương thức quốc tế

nxb-dai-hoc-su-pham-tphcm-12

NXB - Đại Học Sư Phạm TPHCM

NXB - Đại Học Sư Phạm TPHCM

Chủ đề

Liên Kết Chia Sẻ

mu88 ** Đây là liên kết chia sẻ bới cộng đồng người dùng, chúng tôi không chịu trách nhiệm gì về nội dung của các thông tin này. Nếu có liên kết nào không phù hợp xin hãy báo cho admin.